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PROBABILISTIC INTERFERENCE IN
RESTRICTIVE SYSTEMS

1. INTRODUCTION
The notion of noninterference was first introduced by Goguen and Meseguer [1,2] to formally specify

and verify security properties. Their formalism allows a specifier to state properties of the form: "commands
from the set A, issued by users in the set G, do not interfere with users in the set G'." Goguen and
Meseguer showed that a variety of security policies (including label-based mandatory access controls and
identity-based discretionary access controls) could be specified by using this formalism. In addition to their
wide applicability, noninterference assertions capture our intuition of security properties very well. For these
reasons, the noninterference formalization is very appealing as the basis for a general theory of security.

One problem with Goguen and Meseguer's original formulation of noninterference is that they modeled
computer systems as deterministic state machines. As discussed in Ref. 3, many computer systems are
nondeterministic and therefore cannot be accurately modeled as deterministic machines. Recognizing this,
Sutherland [4] and later McCullough [3,5] modeled computer systems as nondeterministic state machines
and defined security policies in terms of those models.

In accordance with the view that large, distributed, secure computer systems should be built by
hooking up independently built and verified component systems, McCullough proved that his definition of
security, called restrictiveness, is composable (i.e., by hooking up two or more restrictive systems, a composite
system which is restrictive is produced).

Despite the advances made to date, culminating with McCullough's definition of restrictiveness, some
problems remain. First, verifying that a system is restrictive does not show anything about covert timing
channels. Specifically, high events can interfere with the timing of low events (e.g., response time). This
timing interference can be exploited by trojan horses to leak sensitive information to unauthorized users. In
current practice, covert timing channel analyses are performed to find and determine the threat associated
with these channels.

Second, verifying that a system is restrictive does not show anything about probabilistic channels; high
events can interfere with the probability that a low event will occur. As with timing interference, probabilistic
interference can be exploited by a trojan horse to reliably leak high information to unauthorized users. This
problem has been noted by other researchers [5,6] but has not previously been addressed.

Third, for the types of interference that are prevented by restrictiveness, the policy cannot be relaxed
to allow a small amount of interference. It has been said that computer systems "are often not intended
to be completely secure" [7] and that any "real system will have channels that violate the noninterference
policy" [6]. For example, low-bandwidth covert channels may be permitted for the sake of performance. For
this reason, restrictiveness may be too strong a property for a real system to satisfy. In both Refs. 6 and 7
recommendations are made to partially address this problem.

On the one hand, restrictiveness does not prevent all types of interference (viz., timing and proba-
bilistic interference) and therefore should be strengthened; on the other hand, restrictiveness is too inflexible
to allow a small (i.e., somehow quantified and deemed to be sufficiently small) amount of insecurity and
therefore should be weakened.

The ultimate objective of our research is to define a security property that completely captures the
notion of noninterference (i.e., there are no loopholes like covert timing channels that must be addressed
separately), and at the same time can be relaxed to allow some quantifiable amount of interference. Fur-
thermore, this security property must be defined in terms of a sufficiently general system model (i.e., aspects
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of real systems such as nondeterminacy must be representable in the model). We hope that such a prop-
erty could be realistically applied in the development of a secure system to gain assurance that the system
provides a specified level of protection.

Our long-term approach for achieving this objective is as follows. Our first objective is to define

perfect noninterference. By perfect noninterference we mean that a system that is shown to be perfectly

noninterfering cannot exhibit undesirable interference of any kind. We believe that only after we fully
understand what it means for a system to be perfectly secure, we can properly define our tolerance for
insecurity. Thus, our second objective will be to generalize perfect noninterference to allow a quantifiable
amount (e.g., 22 bits/min) of interference.

It is toward the first objective-defining perfect noninterference-that the present work is aimed. In
this report, we develop an extension to McCullough's restrictiveness that precludes probabilistic interference.
In this report we also restate McCullough's state-machine formalism and definition of restrictiveness; we
present an example system that illustrates the problem of probabilistic interference. Then we develop an
extension to McCullough's work that solves the problem of probabilistic interference. We present a series
of examples designed to show the application of our extension. and an example of a new solution to the

so-called secure readers-writers problem [8]. At the end we discuss the composability of our extension, and
we present our conclusions and plans for future work.

2. RESTRICTIVENESS

In Ref. 5 state machine restrictiveness is formalized in the following way:

Definition: A state machine E is given by a six tuple (S, ao, E, I, 0, T), where S is the set of all possible
states, a0 C S is the initial state, E is the set of possible events, I C E is the set of all input events, 0 C E
is the set of all output events, and T C S x E x S is the set of all possible state transitions.

Definition: Extended transitions are given by ET C S x E* x S where (a1 , (ei, . . ., en1), an) G ET if and
only if some sequence of states a2 , ., a,-, exists, such that (ai, ei, ai+i) E T for all i, 0 < i < n.

Definition: Let z be an equivalence relation on states of a system E (specifying which states appear to be
the same state from the point of view of a particular user) and v be a subset of E (specifying which events
of E are visible to that user). We call (v, i) a projection of the system S.

The following condition for restrictiveness is exactly the same as McCullough's, restated in a more
compact form. The condition that must be satisfied for a given projection to be restrictive is stated in two
parts. Intuitively, part (1) says that invisible inputs do not affect the visible part of the state; part (2) says
that the invisible part of the state does not affect whether or not visible events occur.

Definition: The projection (v, :) is restrictive for E if the following condition holds.

Let (a 1,, , a') be an arbitrary transition of E.

(1) x e I - v a1r, a' and

(2) Va2 E S, 1 ca2 =* (3Ba e S)(3 (E E*)

[(2a) (a2, yCD) E ET,
(2b) c' ; ai

(2c) x E I X> y = (x),
(2d) x E ((E - I) - v) =-y E ((E - I) - v)*, and
(2e) xz E ((E -I) n V) = 3 yt2 e ((E -I) -v)*) [-/ = 71A (X7)A'Y2]].

Although McCullough does not give an "unwinding theorem", this condition is analagous to the
unwound versions of noninterference given in Refs. 2 and 6.
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3. PROBABILISTIC INTERFERENCE
In the previous definition, (2) intuitively says that the invisible part of the state does not interfere

with whether or not a particular visible event can occur. However, it does not say that the invisible part
of the state does not interfere with the probability with which a particular visible event will occur. For
example, consider the following system that keeps track (via its internal state) of the most recent input, and
from any state nondeterministically outputs either OutO or Outl.

Let El be the state machine given by (S, a0 , E, I, 0, T), where

S= {0,1}
a0 = 0

E = {InO, Inl, OutO, Outl}
I = {InOInl}
0 = {OutO, Outl}
T = {(0. InO, 0), (0,Inl, 1), (0, O utO, 0), (0, O utl, 0), (1, InO, 0), (1,Inl, 1), (1, O utO, 1), (1, O utl, 1)}.

According to the definition of T, in either state 0 or 1 the system can nondeterministically output
OutO or Outl. However, suppose that when an output occurs in state 0, 95% of the time it is OutO, and
only 5% of the time it is Outl. And when an output occurs in state 1, 95% of the time it is Outl, and only
5% of the time it is OutO. These probabilities cannot be represented in McCullough's formalism; therefore,
they do not affect whether or not the system is restrictive.

Theorem 1: Define the equivalence relation z by a, a 0r2 for all states, a, and a2 (i.e., the user cannot
distinguish state 0 from state 1). Let v = {OutO, Outl} (i.e., the user can see outputs but not inputs). The
projection (v, P) is restrictive for El.

Proof: Let (a 1, x, a') be an arbitrary transition of El.

Since a, a U2 for all a1 and a2 ,

(1) x I-v•: a, 1 Oa
is trivially true.

Let a2 be an arbitrary state such that a1 a r2. We must show that

(2) (Elaf £ S)(31y E S*)

[(2a) (a 2 , -Y, a2) e ET,
(2b) a' ; a'

(2c) x E I =>y =(x),
(2d) x E ((E - I) - v)=> Ey( ((E - I) - v)*,
(2e) x C ((E - I) n v) =>(7,72 E ((E - I) - V) )71= At(X) A721] 

There are four cases.

Case 1: x = InO. Choose a' = 0 and -y = (InO). Then (2a) [(a2, -Y, a2) E ET] holds, since in either state InO
may be received, after which the state will be 0; (2b) (a' z a') holds since a1 a2 for all al and a2;
(2c) x E I => -y = (x) holds since -y = (InO) = (x); and (2d) and (2e) hold trivially since x V (E-I).

Case 2: x = Inl. Choose ad = 1 and -y = (Inl). Then (2a)-(2e) all hold by similar arguments.
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Case 3: x = OutO. Choose o2 = 02 and -y = (OutO). We have two subcases.

Case 3.1: 0c2 = 0. In this case, 95% of the time, OutO will be output, so (02, -y, oD) E ET is true.

Case 3.2: 02 = 1. In this case, 5% of the time, OutO will be output, so (02, 'y, o) e ET is true. Therefore,
(2a) holds; (2b) again holds since 01 0 02 for all a1 and 02; (2c) and (2e) hold trivially since
x V I and x V v; (2d) holds since -y = (OutO) = (x) and x e ((E-I) -v) • (x) e ((E-I)-v)*.

Case 4: x = Outl. Choose o2 = 0c2 and -y = (Outl). Then (2a)-(2e) hold by similar arguments.

Thus, (v, z) is restrictive for El. []

We would like this theorem and proof to show that the inputs InO and Inl do not interfere with the
outputs OutO and OutW. However, 95% of the time the outputs accurately convey which input was the most
recent one.

What the theorem actually says is that the inputs InO and InIl interfere only with the invisible part
of the system state, and that the invisible part of the state does not interfere with whether or not visible
events can occur. The security problem arises because the invisible part of the state does interfere with the
probability with which visible events occur. Thus, a noisy but potentially dangerous (and potentially high
bandwidth) channel can exist in a system that is shown to be restrictive. We call this problem probabilis-
tic interference. McCullough [3,9] gives examples of probabilistic interference to illustrate that deducibility
security [Sutherland 86] does not rule out all insecure systems. McCullough also states that restrictiveness
"disallows all kinds of definite channels (ones that don't involve probabilistic inferences)," [5] where "prob-
abilistic inferences" appears to mean what we term probabilistic interference. The problem has also been
noted in Ref. 6, where they ignored nondeterminism and thus did not address the problem.

4. FORMALIZING THE PROBABILITY OF EVENTS
In this section we incorporate probabilistic concerns into the treatment of state machines and restric-

tiveness, and then reconsider El, the example system from the previous section.

4.1. State Machines
We modify McCullough's formalization of state machines as follows.

A state machine E is given by a six tuple (S, vo, E, I, O. T), where S is the set of all possible states,
c0 is the initial state, E is the set of possible events, I C E is the set of all input events, 0 C E is the set
of all output events, and T C S x E. x S x [0,1] is the set of all possible state transitions.

The meaning of (Ol,e,o 2 ,p) E T is as follows:

* If e E - I, then whenever the system is in state 01, the system will engage in e and transition
to 02 with probability p.

* If e e I then whenever the system is in state a1, the system will, with probability p, attempt
to accept e and transition to 0r2. If the environment is not offering e (e.g., a user has not
entered e), then on this attempt the system will perform the null transition (i.e., the system
will transistion from o1 to a1 without engaging in any visible event).

This action of a system attempting to accept an input can be thought of as polling: The system
checks whether the environment is ready to provide the input: if the environment is ready, then the system
accepts the input and makes its transition; if not, then the system does nothing.

This method of obtaining input can hinder good system performance (e.g., due to busy waiting),
therefore, for performance purposes the preferred method of obtaining input is with interrupts. However
for our purpose of preventing interference, interrupts can cause problems. For example, if a high subject
can interrupt a system that interacts with a low subject, the high subject can interfere (probabilistically
and/or temporally) with the low subject by varying the frequency of its interrupts. By using the polling
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method of obtaining inputs, a system controls when it will accept an input and thus has complete control
over whether high inputs interfere with low outputs. For this reason, we chose to include only the polling
method of obtaining input in our system model.

Another effect of the polling method is that it is no longer necessary for systems to be input total
(i.e., a system can decide not to accept an input and the input may be lost). Therefore, in this report we
do not require that systems be input total. Thus, there are systems (which are not input total) that are not
restrictive but do satisfy our definition of security.

Even though the polling method of obtaining inputs is more suitable for security purposes, cases exist
where interrupts are useful and do not cause security problems (e.g., a user interface that interacts with
a single user at a single security level could be driven by interrupts from the keyboard), therefore a fully
general system model should include facilities for specifying and reasoning about interrupts.

Note: For the probabilities of events to make sense, the sum of the probabilities of all next possible events
should equal 1. However, for security purposes, we do not need to make this requirement on systems. We
consider feasibility for implementation to be a separate issue from security. Thus, a specification of a system
may be shown to be secure and at the same time be impossible to implement as specified.

4.2. P-Restrictiveness
In this section we incorporate constraints on probabilistic interference into McCullough's state machine

restrictiveness. First we formalize the probability that the system, starting in state al, will (with respect to
the projection (v, )) appear to engage in the event x and transition to state 02.

Definition: Let

p such that (01, X, 02,P) E T, if such a p exists;
P(Oel 0ze2) 

p 0, otherwise.

Now, for a given projection (v, a), define P(v,,) : S x E x S -* [0,1] as

E P(a,,x"a) if X E v;

P(vU)(0l, X, 02) = E P(ar',a) if x ¢ V.
x'EE-v and

This definition is an integral part of the definition of P-restrictiveness, and so we would like to point out a
few subtleties.

First, note that the probabilities of all transitions from 01 (i.e., only 01) to any state equivalent to 0'2

are summed. This means that P(v,;) (0, IX, 02) is the probability that the system will, from a1. transition
on x (or any invisible event if x is invisible) to a state equivalent to 02. The reason for defining P(l,,) this
way (rather than as the probability that the system will, from any state equivalent to al, transition on ...
should be clear after the definition of P-restrictiveness has been presented.

Second, note that for an invisible event x, the summation includes transitions on any invisible event.
This is because from the point of view of the projection (vow), any two transitions from ai to equivalent
(with respect to ~) states, that engage in invisible (with respect to v) events will appear to be the same.

Third, note that the second case applies for all x V v. This means that for an x that is not in E (i.e..
not even a possible event of the system), P(v,) (01, X, 02) may be positive. Again this is due to the point of
view of the projection (vas). To a user with projection (v, z), a possible system event that is not in c and
another event that is not even a possible system event will appear the same they are both invisible.

5
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Now we present our extension to McCullough's definition of restrictiveness.

Definition: Let ; be an equivalence relation on states of a system Z, and v be a subset of E. The projection
(v, P) is probability-extended-restrictive (P-restrictive) if the following condition holds.

Let ai, a' £ S be arbitrary states, x E E be an arbitrary event, and p £ (0, 1] be a nonzero probability.

(ao,-,ax,p) E T implies

(1) X £ I - v = a, a', and

P(v,;t,) (oj, x, a- ) = p implies

(2) Va2 £ Sal ; a2 =* (3a2 E S)(]y £ E),

[(2a) P~v,~~) (0`2, Y, 02') = p,
(2b) 7' P a,
(2c) x E I = y =x,
(2d) x e ((E - I) - v) => y £ ((E - I) - v), and
(2e) x £ ((E-I) nv) •y = x].

We made this initial statement of P-restrictiveness to emphasize its similarities and differences with
McCullough's definition of restrictiveness. The differences are:

* The antecedent of (1) is changed from (ai,x,a') E T to (ai,x,a',p) E T. This extension
corresponds to the extension of the state machine formalization.

* In the antecedent of (2) and within (2a), (a,x,a') £ T is changed to P(v,,)(a,x,a') - p.
This modification represents the addition of constraints on the probabilities with which events
occur.

* Within (2), the event sequence ay is changed to the event y (e.g., there is a loss of transitive
closure in (2d)). The motivation for this change is to simplify the statement and application
of P-restrictiveness (viz., we avoid computing the probability of the occurrence of arbitrarily
long sequences of events and avoid computing the sum of infinite sets of probabilities of event
sequences). This modification has the unfortunate consequence that some systems that are
restrictive and that do not contain any probabilistic interference are not P-restrictive (i.e.,
P-restrictiveness excludes more systems from the set of all restrictive systems than just the
ones that exhibit probabilistic interference). In section 5, we further extend our state machine
model and definition of P-restrictiveness, which somewhat alleviates this problem.

Largely because of the subtleties of the definition of P(v ,), this condition for P-restrictiveness can be

restated in the following logically equivalent but simpler form.

Theorem 2: Let ~ be an equivalence relation on states of a system E and v be a subset of E. The
projection (v, ) is P-restrictive if the following condition holds.

Let ai, al E S be arbitrary states, x C E be an arbitrary event, and p E (0, 1] be a nonzero probability.

(1) (ai,x,a',p) C T and x E I-v E a, ao and

(2) Va2 E Sa 1 a2 P(V (al, x, a0) P(,,) (a2, x, a).

6
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Proof: Assume that for any states al and a' £ S, any event x £ E, and any nonzero probability p E (0,1],

(1) (al, x, aj,p) £ T and x E I-v =• al a' and

(2) Va2 £ S.al a2 C=> P(,,) (al, x, aO) = P(v,) (a2, x, al)

We must show that the following holds:

Let ai, al £ S be arbitrary states, x £ E be an arbitrary event, and p £ (0, 1] be a nonzero probability.

(a,, x, a', p) C T implies

(1') x I - v => a, 1 al and

P(v,,) (a1, x, au) = p implies

(2') Va2 £ S,a1Ula 2 X (3a' £ S)(3y £ E)

[(2a') P(v,-) (a2 , y, a2) = p,
(2b') a' z a'

(2c') x £ I =E y = x,

(2d') x £ ((E - I)- v)•.y E ((E - I) - v), and
(2e') x E ((E -I) n v) Xy = x] .

1' follows directly from 1. By choosing a' = a' and y = x, 2a' through 2e' follow directly from 2. []

Demonstrating that the original condition for P-restrictiveness (as stated in the definition) implies the
condition in theorem 2 (i.e., demonstrating that the two conditions are in fact logically equivalent) requires
the use of the definition of P(vt), but it is also straightforward. The simplified condition for P-restrictiveness
given in theorem 2 (in addition to being easier to understand) makes the proof of P-restrictiveness easier.

4.3. El Reconsidered
In the probability extended state machine formalization of the previous section, El can be defined by

(S, ao, E, I, 0, T), where

S= {o,I},
ao = 0,
E = {InO, Inl, OutO, Outl},
I = {InO,Inl},

O = {OutO, Outl}, and
T = {(0, InO, 0, .25), (0, Inl, 1, .25), (0, OutO, 0, .475), (0, Outl, 0, .025), (1, InO, 0, .25), (1, Inl, 1, .25),

(1, OutO, 1, .025), (1, Outl, 1, .475)}.

Theorem 3: Let v = {OutO, Outl}. There does not exist an equivalence relation, :z on states of E1, such
that the projection (v, ~) is P-restrictive for E1.

Proof: Since the occurrence of InO and Inl can change the state of the system from 1 to 0 and from 0 to
1, respectively, and InO and Inl are not members of v, for (1) to hold, the equivalence relation P must be
defined by al a2 for all a, and a2 E S.

Therefore we only need to show that given z is defined by al a2 for all al and a2 £ S, (v, Z) is
not P-restrictive.

7
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By the definition of P,

P(v, ) (0, Outo, 0) = E P(oOutoa2)
or20

Since 0 is the only state ao such that P(o,outo,a;) is nonzero, and P(o,outo,o,) = .475,

P(v,,) (0, Out0, 0) = .475

Also by the definition of P,

P(, a) (1, Outo, 0) =EP(1,outon"
2P1

Since 1 is the only state ao such that P(1,Out0,a,) is nonzero, and P(o,outo,(,) = .025,

P(V,) (1, Out0, 0) = .025

Since 0 ~ 1, and P(v,,)(0,Out0,0) = .475 # .025 = P(V,,)(1, OutO, 0), (v,z) cannot be P-restrictiP

for E1. []

5. DENIAL OF SERVICE

This section presents an example of how nondeterminism can be used to prevent denial of servic
First, a denial of service problem is given. A restrictive solution is presented that contains a probabilist
covert channel and is not P-restrictive. Then, an alternative solution is presented that prevents denial
service and is also P-restrictive.

By this series of examples, we hope to show:

(1) Systems that may appear to be reasonable and are restrictive, can contain probabilistic cove
channels.

(2) A useful, nondeterministic system can be shown to be P-restrictive.
(3) Nondeterminism can be used to prevent denial of service without introducing insecurities.

5.1 The Secure Readers -Writers Problem

Consider the following simplified version of the secure readers-writers problem [8]. A single proce:
controls access to a single object. There are two users called "hi" and "lo". User hi wants to issue sequenc(
of commands of the form "begin read", "read", "read", ... "read", "end read". User lo wants to issi
sequences of commands of the form "begin write", "write (Object)", "write (Object)", ... , "write (Object)
"end write." (where (Object) is the value to be written to the controlled object). The integrity requiremel
is: If the controlled object is modified (with a successfully executed "write (Object)" command) sometirr
during a "begin read", "read", "read", ... "read", "end read" sequence then user hi must be notified. In th
way, user hi will be alerted that the object may not have been in a consistent state during the sequence (
reads and may retry the sequence. The security requirement for this problem is that commands issued L
hi may not interfere with the outputs seen by lo.

Note: This problem has been simplified from the general readers-writers problem (as it appeared i
Ref. 8) in two ways:

8
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(1) in the general problem there is more than one object, and
(2) in the general problem there are more than two users. In particular there may be more than one

writer, and so there would be an additional integrity requirement to prevent more than one current
writer.

5.2 A Small Modification to the Model
Before presenting solutions to the secure readers-writers problem, there is an extension to our model

of state machines that we wish to make.

A state machine Z is given by a six tuple (S, ac, E, I, 0, T) where S is the set of all possible states,
uo is the initial state, E is the set of possible events, I C E is the set of all input events, 0 C E is the set
of all output events, and T C S x E* x S x [0,1] is the set of all possible state transitions.

Definition: Let

p such that (u1 , A, 02 , p) E T, if such a p exists;

p sc otherwise.

Now, for a given projection (v, P), define P(v, y : S x E* x S -* [0,1] as,

EP(U1.-ryf2,) if Oy E v;

P(V, y)(,1 a52) = E P(ufiy',o2) if v.
y'Y' E-v and

e Pe2

Definition: The infix function l: E* x p(E) -* E* (called restriction), where p(E) is the powerset of E, is
defined recursively as follows: For any set of events El C E,

() I El (

and for any x E andany ycE*,

E/AIl -yLI l if xcE~l;
((x)/Y) | { (:)A( y lEl) otherwise.

Definition: Let z be an equivalence relation on states of a system E and v be a subset of E*. The projection
(v, ~) is P-restrictive if the following condition holds.

Let u1, ao e S be arbitrary states, ,y e E* be an arbitrary event sequence, and p E (0, 1] be a nonzero
probability.

(1) (al,'yaip) C T and -y I I0 ( and -y ¢ v X al 0 o1

(2) Va2 E S, 1 0 a2 E P(vz)(ol,'Y, O) = P(vz)(a2,7Oa

We use this state machine formalization and definition of P-restrictiveness throughout the remainder
of this report.

McCullough's state machine formalization and restrictiveness can be similarly generalized to allow
transitions on atomic sequences of events as follows.

9
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Definition: A state machine E is given by a six tuple (S. co, E, I, 0, T), where S is the set of all possible
states, 0o C S is the initial state, E is the set of possible events, I C E is the set of all input events, 0 C E
is the set of all output events, and T C S x E* x S is the set of all possible state transitions.

Definition: Extended transitions are given by ET C S x E* x S where (a1, (ei . . , en), a,) E ET if and
only if there exists some sequence of states 02, . .., Un_1, such that (ai, ei, 0i+1) C T for all i, 0 < i < n - 1.

Definition: Let be an equivalence relation on states of a system E and v be a subset of E*. The projection
(v, ) is restrictive for E if the following condition holds.

Let (a1, y, a) be an arbitrary transition of E.

(1) -y e>tI and -y av a 1 a' and

(2) Va2 E S, al 0~ a2= (302 e S)(3 y' C E*)

[(2a) (a2, -y', a) e ET,

(2b) a' z or'

(2c) -y cD I and -y E v y' =-y,

(2d) My ¢ v X* y' E (E* - v)*, and
(2e) -y aI and PY E v > (71, 2 e ((E-I)*-V)*)[Y 71 'Y'Y2]]

5.3 Existing Solutions
Solutions for the secure readers-writers problem that use event counts have appeared in the literature

since 1974 [10-12], and [8]. These solutions allow the writer to start writing at any time, regardless of whether
a reader is currently reading. This prevents all interference with low outputs by high inputs. However, it
has the unfortunate consequence that writers can deny service to readers by frequent writing.

The following solution is equivalent in effect to these event count solutions.

Let E2 be the state machine given by (S. ,o, E, I, 0, T), where

S = {0, 1} x {0, 1} x object x integer x integer

The state of this system is made up of two Booleans, one object (we assume that the type object is
previously defined) and two integers. -To make the system easier to describe and to understand, we refer to
the components of a state a by the following mnemonics:

a.LoLock: boolean
a.HiWaiting: boolean
a.O: object
a.EventCount: integer
a.HiStartRead: integer

The initial state of the system is given by:

ao.LoLock = false {Note: false means 0, true means 1}
uo.HiWaiting= false
ao.O = null
ao.EventCount = 0
ao.HiStartRead = 0

E {BeginRead, OKtoRead, Read, EndRead, ReadSuccessful, ReadFailed, BeginWrite,
OKtoWrite, ObjectWritten, ObjectNotWritten, EndWrite, WriteSuccessf ul, c} U object U
{ write o I o E object }

10
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I = {BeginRead, Read, EndRead, BeginWrite, EndWrite} U { Write o I o C object }

O = {OKtoRead, ReadSuccessf ul, ReadFailed, OKtoWrite, ObjectWritten, ObjectnotWritten,
WriteSuccessful} U object

T ={ (a, (BeginRead), a', .143) I a' = a except a'.HiWaiting = true } U

{ (o, (OKtoRead), a', .143) oa.HiWaiting true and a.LoLock = false and a' = a except
a'.HiWaiting = false and a'.HiStartRead = a.EventCount } U

{ (a, (e), a, .143) I (a.HiWaiting = false or o.LoLock = true) } U
{ (a, (Read, o), a, .143) | o = o.O } U
{ (o, (EndRead, ReadSuccessf ul), a, .143) I a.HiStartRead = o.EventCount } U
{ (a, (EndRead, ReadFailed), a, .143) I o.HiStartRead 7& a.EventCount } U

{ (a, (BeginWrite, OKtoWrite), a', .143) 1 a' = a except a'.LoLock = true and
a'.EventCount = a.EventCount + 1 1 U

{ (a, (Write o, ObjectWritten), a', .143) oa.LoLock = true and o C object and
a' = a except a'.O = o} U

{ (a, (Write o, ObjectNotWritten), a, .143) I o.LoLock = false } U

{ (a, (EndWrite, WriteSuccessful), a', .143) 1 a' = a except a'.LoLock = false }.

Note: the set { (a, (e), a, .143) 1 (a.HiWaiting = false or o.LoLock = true) } is included in T so that E2
will be P-restrictive.

Theorem 4: Let E2' =(S', ao,', I', O', T') where S' = S, oa = ao, E' = E, I' = I, O' = 0, and
T'= {(O1, 0Y, a2) I 3p E (0,1] such that (01, 7y, 02,p) C T}.

Let ; be defined by:

For all a and o', a a' if and only if
a.LoLock = a'.LoLock,

and let

v = {(BeginWrite, OKtoWrite), (EndWrite, WriteSuccessful) } U { (Write o, ObjectWritten)

I o C object } U { (Write o, ObjectNotWritten) I o E object }.

The projection (v, z) is restrictive for E2'.

Proof: Let (0l 'y, oU) be an arbitrary transition of E2'.

We must show that:

(1) -/ e>I' and -y V v = al or' and

(2) VO2 E S',oi a 0 02 => (3uo C S')(3-y' E E'*)

[(2a) (U2,y ',)) C ET',
(2b) a,' z~ ,

(2c) -y c- I' and y E v •' ' =

11
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(2d) y ¢ v =- -y' C (E'* - v)*, and

(2e) y 9D It and y E v X (Iy1,jny2 E (E* -v)*)[a = iYA Y 2 ]]

To show (1), we examine the definition of T' to find all ay such that (al, y, a') C T' and

Er C I and y V v. The examination reveals that there are four such -Y : (BeginRead), (Read, o),
(EndRead, ReadSuccessful), and (EndRead, ReadFailed). We consider the four cases individually.

Case 1: -y= (BeginRead).
The only state transitions that accept BeginRead as input are given by:

{ (a, (BeginRead), o') I c' = a except o'.HiWaiting = true }

Thus, or = al except a'.HiWaiting = true. And by the definition of P, 01 0Z a.

Case 2: x = (Read, o).
The only state transitions that engage in (Read, o) are given by:

{ (a, (Read, o), a) I o = a.O }

Thus there is no change in state, and so, al oa.

Case 3: x = (EndRead, ReadSuccessful).
The only state transitions that engage in (EndRead, ReadSuccessful) are given by:

{ (a, (EndRead, ReadSuccessful), a) I u.HiStartRead = o.EventCount }

Thus there is no change in state and so, al ;o.

Case 4: x = (EndRead, ReadFailed).
The only state transitions that engage in (EndRead, ReadFailed) are given by:

{ (a, (EndRead, ReadFailed), a) I o.HiStart Read :7 o.EventCount }

Thus there is no change in state and so, ao ,a.

Therefore, (1) holds.

Now, to show (2), let 02 be an arbitrary state such that 01 0 2. We must show that

(3c' E S')(3r' C E'*)

[(2a) (U2,Y', O) E ET',

(2b) a2o aj,

(2c) -y e> I' and yv=y' = ,
(2d) y v y' E (E'* - v)*, and

(2e) ay §>I' and y C v => (3 Y1, Y2 E (E'* -v)*)[7' = A-Y"-Y2]]

By.examination of T', the transitions of E2' are described by ten sets of transitions unioned together.
By showing (2) for all 10 sets we will have shown (2) for all transitions. We consider the 10 sets in 10
separate cases.

12
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Case 1: (a1,'y,oI) C { (a, (BeginRead),o') I o' = a except o'.HiWaiting = true}

Choose oa = 02 except o2'.HiWaiting = true. Choose Ay' = -y. Now, (U2, 2y',a) C

{ (a, (BeginRead), o') I a' = 0 except o'.HiWaiting = true }
so (2a) holds; by the transitivity of ;, (2b) holds; since Zy' -y, (2c) holds; and (2d) and (2e)
hold vacuously since -y CD I' and y e v. Therefore, Case 1 holds.

Case 2: (1, y, a) C {(a, (OKtoRead), o') I o.HiWaiting = true and o.LoLock = false and O' =
a except o'.HiWaiting = false and a'.HiStartRead = o.EventCount }
Suppose that U2.HiWaiting = true. Then, choose a' = 02 except u'.HiWaiting = false
and u'.HiStartRead = U2.EventCount. Choose y' = . Now, (02, 7Y', o2) C

{(o, (OKtoRead), o') I o.HiWaiting = true and a.LoLock = false and a' = 0 except
a'.HiWaiting = false and o'.HiStartRead = a.EventCount }
so (2a) holds; by the transitivity of P, (2b) holds; since -y' = -y, (2c) holds; and (2d) and (2e)
hold vacuously since My Cn I' and -y C v.
On the other hand, suppose that o 2 .HiWaiting = false. Then, choose o2 = 02 and choose
-y' = (e). Now, (72, Y', UD) e { (a, (e), o) I (o.HiWaiting = false or o.LoLock = true) }
so (2a) holds; by the transitivity of ~, (2b) holds; (2c) and (2e) hold vacuously since -y V v;
and (2d) holds since y' C (E'* - v)*. Therefore, Case 2 holds.

Case 3: (al, Ay, u) C { (a, (e), a) | (o.HiWaiting false or a.LoLock = true) }

This case is analogous to Case 2.

Case 4: (01, -y, a') C { (a, (Read, o), a) I o = a.O }

Choose o2 = 02. Choose I' = (Read, o') where o' = 02.0. Now, (U2, Y', 2) C

{ (or, (BeginRead), a') I a' = a except o'.HiWaiting = true }
so (2a) holds; by the reflexivity and the transitivity of ~, (2b) holds; (2c) and (2e) hold
vacuously since -y V v; and (2d) holds since y' C (E'* - v)*. Therefore, Case 4 holds.

Case 5: (a1, y, a) C { (a, (EndRead, ReadSuccessful), o) I o.HiStartRead = o.EventCount }

Suppose that U2.HiStartRead = 02.EventCount. Then, choose u' = 02. Choose -y' = -y.
Now, (U2, y', Or) C { (a, (EndRead, ReadSuccessful), a) I o.HiStartRead = a.EventCount }
so (2a) holds; by the transitivity of ;, (2b) holds; (2c) and (2e) hold vacuously since -y v,
and (2d) holds since -y' C (E* - v)*.

On the other hand, suppose that o2.HiStartRead 54 o2.EventCount . Then, choose 02 = 02

and choose -y' = (EndRead, ReadFailed). Now, (02, Y', 92) C
{ (o, (EndRead, ReadFailed), a) I o.HiStartRead $ a.EventCount }
so (2a) holds; by the transitivity of ~, (2b) holds; (2c) and (2e) hold vacuously since My v;

and (2d) holds since y' e (E'* - v)*. Therefore, Case 5 holds.

Case 6: (u1,y, a') C { (a, (EndRead, ReadFailed), a) I o.HiStartRead u o.EventCount }

This case is analogous to Case 5.

13
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Case 7: (al, y, al) G { (a, (BeginWrite, OKtoWrite), a') I a' = a except o'.LoLock = true and
u'.EventCount = o.EventCount + 1I

Choose oa = 02 except a2'.LoLock = true and o2'.EventCount = o2.EventCount + 1.
Choose -y' = -y. Now, (02, y',oU) C { (a, (BeginWrite,OKtoWrite),o') I a' = a except
a'.LoLock = true and a'.EventCount = u.EventCount + 1}
so (2a) holds; since a'.LoLock = true = oa.LoLock, (2b) holds; since y' = -y, (2c) holds; and
(2d) and (2e) hold vacuously since wy CcD I' and -y e v. Therefore, Case 7 holds.

Case 8: (01, ,y, oa) G { (a, (Write o, ObjectWritten) , a') | a.LoLock = true and o C object and
a' = a except o'.O = o}

Choose a2 = 02 except o2'.0 = o. Choose -y' = y. Now, since 02 1 al, 92.LoLock = true
and (02,-y',o2) C
{ (o, (Write o, ObjectWritten), a') I a.LoLock = true and o C object and a' = a except
a'.O = 0}
so (2a) holds; by the transitivity of ~, (2b) holds; since y' = -y, (2c) holds; and (2d) and (2e)
hold vacuously since -y C. I' and -y E v. Therefore, Case 8 holds.

Case 9: (al, -y, ol) C { (a, (Write o, ObjectNotWritten), o) I o.LoLock = false }

Choose o2 = 02. Choose -y' = y. Now, since 02 1 al, o2 .LoLock = false and (02, y',0U) C
{ (a, (Write o, ObjectNotWritten), a) I o.LoLock = false }
so (2a) holds; by the transitivity of ;, (2b) holds; since -y' = I, (2c) holds; and (2d) and (2e)
hold vacuously since -y eC I' and y C v. Therefore, Case 9 holds.

Case 10: (al, -y, a') E { (a, (EndWrite, WriteSuccessful), a') I a' = a except o'.LoLock = false }

Choose a' = 02 except a2'.LoLock = false. Choose -y' = y. Now, (a2, y',aO) C

{ (a, (EndWrite, WriteSuccessful), a') I a' = a except o'.LoLock = false }
so (2a) holds; since a'.LoLock = false = a', (2b) holds; since fy' = -y, (2c) holds; and (2d) and
(2e) hold vacuously since a-y CD I' and -y C v. Therefore, Case 10 holds.

Thus (2) holds and (v, ~) is restrictive for E2'. []

Theorem 5: Let z be defined by:

For all a and o', a 0 a' if and only if o.LoLock = a'.LoLock

and let
v = {(BeginWrite, OKtoWrite), (EndWrite, WriteSuccessful) } U { (Write o, ObjectWritten) I o E

object } U { (Write o, ObjectNotWritten) I o C object }

The projection (v, ;) is P-restrictive for E2.

Proof: Let a1 and a' E S be arbitrary states, -y E E* be an arbitrary event sequence, and p C (0,1] be a
nonzero probability.

We must show that:

(1) (ai, -y,op) G T and y I ()and -y V v > al ; a' and
(2) VO2 E S, a1 'Z 2 • U

P(V,) (al, 'y, al ) = P(, (92, 'y, l).
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To show (1), we examine the definition of T to find all 'y such that (Ol, ya ,p) c T and
y I I :7 () and -y ¢ v. The examination reveals that there are four such 'y : (BeginRead), (Read, o),
(EndRead, ReadSuccessful), and (EndRead, ReadFailed). We consider the four cases individually.

Case 1: -y = (BeginRead).
The only state transitions that accept BeginRead as input are given by:

{ (a, (BeginRead), o', .143) I a' = a excepta'.HiWaiting = true }

Thus, a' = a1 except oj .HiWaiting = true. And by the definition of P, 01 P~ a.

Case 2: x = (Read, o).
The only state transitions that engage in (Read, o) are given by:

{ (a, (Read, o), a, .143) | o = a.O }.

Thus there is no change in state, and so, a0 oI a.

Case 3: x = (EndRead, ReadSuccessful).
The only state transitions that engage in (EndRead, ReadSuccessful) are given by

{ (a, (EndRead, ReadSuccessful), o, .143) | o.HiStartRead = a.EventCount }.

Thus there is no change in state and so, al oi a.

Case 4: x = (EndRead, ReadFailed).
The only state transitions that engage in (EndRead, ReadFailed) are given by

{ (a, (EndRead, ReadFailed), a, .143) I o.HiStartRead # a.EventCount }.

Thus there is no change in state and so, a, 1 a,.

Therefore, (1) holds.

Now, to show (2), let 02 be an arbitrary state such that al 0 a2. We must show that P(, a) (1, 'y, al) =

P(v,,;:) (0a2, ty, arl).-

We have two major cases: ay EC v and -y ¢ v.

Case 1: Cy G v.

According to the definition of v, there are four different event sequences -y C v for which we
must show the above equality. We proceed with one subcase for each of these event sequences.

Case 1.1: -y = (BeginWrite, OKtoWrite).
By examination of T, the transitions that can engage in 'y are given by:

{ (a, -y, a', .143) I o' = a except o'.LoLock = true and a'.EventCount = o.EventCount + 1 }

Suppose oa.LoLock = true. There exists exactly one a' C S such that a' = a1 ex-
cept o'.LoLock = true and a'.EventCount = o1 .EventCount + 1. Since o'.LoLock =
true = o'.LoLock, a' z a' and therefore, P(U,)(olnyvoi) = .143. By similar reasoning,
P(v,,) (a2 , M Ul )= .143. Hence, P(U,)(al,A, al) =(a,, 1, Ol
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Suppose, on the other hand, that a' .LoLock = false. In this case, there does not exist a O' P a'
such that a' = a1 except o'.LoLock = true and a'.EventCount = ao.EventCount+1. And so,
P(V,~)(al,"r, l) = 0. And by similar reasoning, P(vr)(o2,'y, U) = 0. Hence again,
P(v,,:) (a371, - = P(, )( 2, -yo'). Therefore, Case 1.1 holds.

Case 1.2: = (Write o, ObjectWritten) for some object o.
By examination of T, the transitions that can engage in a are given by

{ (o, -y, 0', .143) | o.LoLock = true and a' = a except a'.O = o

Suppose that a1.LoLock = oa.LoLock = true. There is exactly one state o' such that a' = al
except a'.O = o. Since (a1, (Write o, ObjectWritten), o', .143) is thus a member of the above
set and a' a', P(v~,)(al,,y, o) = .143. By the same reasoning (since al 0 2 and hence,
o2.LoLock = oa.LoLock = true also), P(,,)(o 2 ,7y,a') = .143. Hence, P(v,,)(ol,-y,oi) =

P(v1, ) (0'2, ty, al ) 

On the other hand, suppose that a1.LoLock = false or oa.LoLock = false. In this case,
there does not exist a a' zao such that a1.LoLock = true and a' = a, except o'.O =
o, and so, P(v>(0ly,0i) = 0. Similarly, since a1 0 U2 and so o2.LoLock = al.LoLock,
P(v,)(0 2 ,-y,01) = 0. Hence, again P(U,)(ol-yol) = P(U(o 2 ,<yoa). Therefore, Case 1.2

holds.

Case 1.3: 'y = (Write o, ObjectNotWritten) for some object o.
By examination of T, the transitions that can engage in -y are given by:

{ (o, 'y, o, .143) |-'o.LoLock }.

Suppose that al.LoLock = oa.LoLock = false. Then, (a,, y,o1,.143) is a member of the
above set and a, al, and so P(a'(olyvol) = .143. By the same reasoning (since

al 0 a2 and hence, 92.LoLock = aI.LoLock = false also), P(,,)(U2 ,�ya') = .143. Hence,
P(v3~, (al,'Y, Oal) = (,2, Y, al )

On the other hand, suppose that o1.LoLock = true or u'.LoLock = true. In this case, either
(ol,-y, a,.143) is not a member of the above set, or a1 oal, and so, P(v,,)(aliya') = 0.

Similarly, since a, 0r2 and so o2.LoLock = ol.LoLock, P(U,,)(02 , y, ) = 0. Hence again,
P(,z) (01 7<, oU) = P(,,)(02,'Y, 0). Therefore, Case 1.3 holds.

Case 1.4: -y = (EndWrite, WriteSuccessful).
By examination of T, the transitions that can engage in ay are given by

{ (a, 7y, 0', .143) I a' = a excepto'.LoLock = false }.

Suppose oa.LoLock = false. Then, there is exactly one state a' such that a' = a1 ex-
cept o'.LoLock = false. Since oa.LoLock = false = o'.LoLock, oa o a' and there-
fore, P(V,)(ol'yval) = .143. By similar reasoning, P(vz)(U 2 ,yYo) = .143. Hence,
* P(v ,(al, y,o al) =P(4O 2, y, a)-

Suppose, on the other hand, that a'.LoLock = true. In this case, there does not exist a
a' j al such that o' = a1 except o'.LoLock = false. And so, P(t,)(olXyval) = 0. And
by similar reasoning, P(,,)(U 2 ,Y, Ol) = 0. Hence again, P(,,)(Ol,'Y, 0) = P(0,2)(o2 y, 91)

Therefore, Case 1.4 holds, and so Case 1 holds.
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Case 2: -y ¢ v.
We divide this case into two subcases: al - a' and al o a'.

Case 2.1: a1 ~ al
By the definitions of T, v, and ~, it can be shown that for any possible transition (a, -y, a',p)

where -y is an invisible event sequence, it is the case that a U a' (i.e., for any Ay' C E* - v.

(o1,'ty',o ,p) C T implies a, osa).
Now, by the definition of P,

P(UZ)(ol,-y ol ) = E P(0f1.-r'.2
y'EE-v and

Since a, o a and, for any -y' C E* - v, (o1, y', o,p) G T implies a1 ; a' (as noted above),

the above equation can be simplified to

P(V,')(al,'y, ol) = E P(ai,.',a;) = P(v,)(al, , ol)
'yfEs-v

Claim: Given that -y ¢ v, for any a e S, P(v,) (a, y, o) = .572.

Justification: Given any state a, (1) the event (BeginRead) can occur with probability

.143; (2) The event (Read, o) can occur with probability .143; (3) Either (OKtoRead) or

(e), but not both, can occur with probability .143 (depending on the values of o.HiWaiting

and a.LoLock); and (4) Either (EndRead, ReadSuccessful) or (EndRead, ReadFailed), but
not both, can occur with probability .143 (depending on the values of o.HiStartRead and

o.EventCount).

Summing up these four, P(v,,i) (a, -y, a) = .572, regardless of the state a.

Therefore, we have,

P(vP,~)(l,, Al) = P(Vr;(al,'yo al) = P(V,,)(o2 ,Y tb 2) = P(,z)(92, 0"D

and Case 2.1 holds.

Case 2.2: a1 ? al
In this case, there is no a' o al and probability p, such that (a1,yo2,p) C T. So,

P(v,~)(a1,,ya') = 0. Similarly, since a1 0 U2 and so, 02 6 al, it can also be shown that

P(VU~)2, Ya= 0. Thus, P(vU)(al-y, a) = P(,t)(o 2 , y, o) and Case 2.2 holds.

Thus (2) holds and (v, P) is P-restrictive for E2. []

17



NRL REPORT 9315

5.4 A First Attempt at Preventing Denial of Service
The above solution has no probabilistic interference. However, as mentioned previously, low writers

can easily deny service to high readers by writing frequently. In fact, Reed and Kanodia [8] point out that
"No algorithm can simultaneously guarantee that readers will be able to complete reading and that readers
can never signal writers ..."

A reasonable approach to partially solving this denial of service problem is to nondeterministically
decide whether to grant write access to the low writer. If the low writer were not always permitted to obtain
write access, then the high reader would have a greater chance to complete reading.

A system designer might (maliciously or with good intentions) decide that if a high reader is currently
reading, then the low writer should most often be denied write access. Whereas if the high reader is not
reading, then the low reader should most often be granted access.

With this strategy in mind, the following solution might be advanced.

Let E3 be the state machine given by (S, 0o, E, I, 0, T), where

S = {0, 1} x {0, 11 x {0, 1} x object x integer x integer.

We refer to the components of a state o by the following mnemonics:
a.LoLock: boolean
o.HiWaiting: boolean
o.HiReading: boolean
a.0: object
u.EventCount: integer
a.HiStartRead: integer.

The initial state of the system is given by
oo.LoLock = false
oo.HiWaiting = false
co.HiReading = false
oo.0 = null
ao.EventCount = 0
oo.HiStartRead = 0

E = {BeginRead, OKtoRead, Read, EndRead, ReadSuccessf ul, ReadFailed, BeginWrite, OKtoWrite,
NotOKtoWrite, ObjectWritten, ObjectNotWritten, EndWrite, WriteSuccessf ul, e} U

object U { write o I o E object }.

I = {BeginRead, Read, EndRead, BeginWrite, EndWrite} U { Write o I o G object }
o = {OKtoRead, ReadSuccessful, ReadFailed, OKtoWrite, NotOKtoWrite, ObjectWritten,

ObjectnotWritten, WriteSuccessful} U object

T = { (a, (BeginRead), a', .143) a a' = a except o'.HiWaiting = true } U
{ (a, (OKtoRead) ,o', .143) | a.HiWaiting = true and o.LoLock = false and a' = o except

o'.HiWaiting = false and a'.HiReading = true and a'.HiStartRead = u.EventCount } U
{ (o, (e), a, .143) | (o.HiWaiting = false or a.LoLock = true) } U
{ (a, (Read, o), o, .143) | o = a.O } U
{ (o, (EndRead, ReadSuccessful), o, .143) I o.HiStartRead = o.EventCount } U

{ (a, (EndRead, ReadFailed), a, .143) I o.HiStartRead 5 o.EventCount } U
{ (a, (BeginWrite, OKtoWrite), a', .043) | o.HiReading = true and a' = a except

a'.LoLock = true and a'.EventCount = a.EventCount + 1 U
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{ (a, (BeginWrite, NotOKtoWrite), o, .1) I o.HiReading = true } U
{ (a, (BeginWrite, OKtoWrite), a', .1) I a.HiReading = false and O' = a except

a'.LoLock = true and o'.EventCount = a.EventCount + 1 } U
{ (a, (BeginWrite, NotOKtoWrite), a, .043) [ o.HiReading = false } U

{ (a, (Write o, ObjectWritten),a', .143) | o.LoLock = true and a' = a except o'.O = o } U
{ (o, (Write o, ObjectNotWritten), a, .143) | u.LoLock = false } U

{ (a, (EndWrite, WriteSuccessf ul), a', .143) | a' = a except o'.LoLock = false }.

Theorem 6: Let T3' =(SI, al, El, FI, O', T) where S' = S, o- = ao, E' = E, I' = O, 0' 0, and
T'= { (a1, 0y U2) I 3p C (0,1] such that (o1,a , 02,p) C T}.

Let be defined by:

For all 0 and a', a o a' if and only if o.LoLock = u'.LoLock

and let
v = {(BeginWrite, OKtoWrite), (BeginWrite, NotOKtoWrite), (EndWrite, WriteSuccessful) } U

{ (Write o, ObjectWritten) [ o C object } U { (Write o, ObjectNotWritten) I o C object }.

The projection (v, ~) is restrictive for Z3'.

Proof: Let (a1, -y, ol) be an arbitrary transition of Z3'.

We must show that:

(1) Cy e>I' and y ' v •al 01 or and

(2) Va 2 E S',l 1a2 •2 (P71 C S')(3Py' E'*)

[(2a) (2, Y',a') C ET',
(2b) oa2 ~- 'l,
(2c) Ct ED I' and Cv C v y' =

(2d) a ¢ v => -y' E (E'* - v)*, and
(2e) a >I' and -y e v = (3+y1,-y2 C (E - v)*)[-y= ^yi1yAzY2]].

(1) can be shown in exactly the same way as in the proof of theorem 4.

Now, to show (2), let 02 be an arbitrary state such that al 0 92. We must show that

(3u2 E S')(3-y' C E'*)

[(2a) (2 y', O') G ET',
(2b) ' o~ lo,
(2c) yE> PI' and vy C v y' = ,
(2d) -y v => y' e (E'* - v)*, and

(2e) My X>I and y E v X (3h/1, y2 C (E' _v)")[y' = 71AY y 2 ]]

By examination of T', the transitions of E2' are described by 13 sets of transitions unioned together.
By showing (2) for all 13 sets we will have shown (2) for all transitions. We consider the 13 sets in 13
separate cases.
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Case 1: (a1,y, al) e { (a, (BeginRead),a') I a' = a except a'.HiWaiting = true}.

Choose a' = 02 except a2'.HiWaiting = true. Choose -y' = -y. Now, (02, My', a2) C

{ (a, (BeginRead), a') I a' = a except a'.HiWaiting = true }
so (2a) holds; by the transitivity of A (2b) holds; since -y' = my, (2c) holds; and (2d) and (2e)
hold vacuously since ay > I' and y C v. Therefore, Case 1 holds.

Case 2: (a, y, a') E {(a, (OKtoRead), a') I a.HiWaiting = true and a.LoLock = false
and a' = a except a'.HiWaiting = false and a'.HiReading = true and
a' .HiStartRead = a.EventCount }.

Suppose that U2 .HiWaiting = true. Then, choose o2 = 02 except u2.HiWaiting = false
and a'.HiReading = true and oa.HiStartRead = o2.EventCount. Choose y' = y. Now,
(02, ', o") {(a, (OKtoRead), a') I o.HiWaiting = true and o.LoLock = false
and a' = a except a'.HiWaiting = false. and o'.HiReading = true and
9'.HiStartRead = a.EventCount } so (2a) holds; by the transitivity of ~, (2b) holds; since

a' = -y, (2c) holds; and (2d) and (2e) hold vacuously since -y D I' and -y E v.

On the other hand, suppose that 02.HiWaiting = false. Then, choose a' = 02 and choose
-y' = (e). Now, (a2, y', O) C { (a, (e), o) I (a.HiWaiting = false or a.LoLock = true) }
so (2a) holds; by the transitivity of A, (2b) holds; (2c) and (2e) hold vacuously since y v;

and (2d) holds since Oy' E (E'* - v)*. Therefore, Case 2 holds.

Case 3: (a1,, y, a) e { (a, (e), a) I (a.HiWaiting = false or a.LoLock = true) }

This case is analagous to Case 2.

Case 4: (aj,,y, a') E { (a, (Read, o), a) I o = .O }

Choose a2 = 02. Choose by' = (Read, o') where o' = 02.0. Now, (02, Y', a2) G

{ (a, (BeginRead), a') I a' = o except a'.HiWaiting = true }
so (2a) holds; by the reflexivity and the transitivity of n, (2b) holds; (2c) and (2e) hold
vacuously since y s v; and (2d) holds since -y' C (E'* - v)*. Therefore, Case 4 holds.

Case 5: (a1, -y, Oj) C { (a, (EndRead, ReadSuccessful), a) I a.HiStartRead = a.EventCount }

Suppose that a2 .HiStartRead = a2.EventCount. Then, choose 72 = 02. Choose By' =
Now, (a2, y, O) C
{ (o, (EndRead, ReadSuccessful), a) I a.HiStartRead = o.FventCount }
so (2a) holds; by the transitivity of ~, (2b) holds; (2c) and (2e) hold vacuously since aY v;

and (2d) holds since -y' E (E'* - v).

On the other hand, suppose that a2 .HiStartRead 0 a2 .EventCount . Then, choose a' = 02
and choose -y' = (EndRead, ReadFailed). Now, (a2, Y', a2) 
{ (a, (EndRead, ReadFailed), a) I a.HiStartRead 7& a.EventCount }
so (2a) holds; by the transitivity of P, (2b) holds; (2c) and (2e) hold vacuously since 'y v'

and (2d) holds since -y' E (E'* - v)*. Therefore, Case 5 holds.
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Case 6: (01, -y, a') C { (a, (EndRead, ReadFailed), a) I a.HiStartRead $ a.EventCount }
This case is analagous to Case 5.

Case 7: (al, oy, a) E { (a, (BeginWrite, OKtoWrite), a') I o.HiReading = true and a' = a except
o'.LoLock true and a'.EventCount = a.EventCount + 1 }

Choose a2 = 02 except a2'.LoLock = true and o2'.EventCount = o2.EventCount + 1.
Choose -y' = -y. Now, if a2 .HiReading = true, then (a2,"y',a2) C
{ (a, (BeginWrite, OKtoWrite), a') I a.HiReading true and a' = a except a'.LoLock =
true and a'.EventCount = a.EventCount + 1. If a2 .HiReading = false, then
(02, -Y', o2) C { (a, (BeginWrite, OKtoWrite), a') I a.HiReading= false and, a' = a except
0'.LoLock = trueanda'.EventCount = a.EventCount + 1 } so (2a) holds; since 01 .LoLock =
true = ao.LoLock, (2b) holds; since -y' = y, (2c) holds; and (2d) and (2e) hold vacuously since

a- eDI' and -Y E v. Therefore, Case 7 holds.

Case 8: (a1, -y, a') E { (a, (BeginWrite, NotOKtoWrite), a) I a.HiReading = true }
This case is analagous to Case 7.

Case 9: (a1, -y, a') C { (a, (BeginWrite, OKtoWrite), a') I a.HiReading = false and a' = a except
a'.LoLock = true and a' .EventCount = a.EventCount + 1}
This case is analagous to Case 7.

Case 10: (01, Oy, ai) E { (a, (BeginWrite, NotOKtoWrite), a) I a.HiReading = false }
This case is analagous to case 7.

Case 11: (a1, y, 01) E { (a, (Write o, ObjectWritten), a') I a.LoLock = true and o E object and
a' = a except a'.O = o 0

Choose a2 = 02 except o2'.0 = o. Choose -y' = y. Now, since 02 0 l, a2.LoLock = true
and (02, y', a2) C { (a, (Write o, ObjectWritten) , a') I o.LoLock = true and o C object and
a' = a except o'.O = o 0 so (2a) holds; by the transitivity of ;, (2b) holds; since -y' = -y, (2c)

holds; and (2d) and (2e) hold vacuously since -y e>I' and -y C v. Therefore, Case 11 holds.

Case 12: (a, ay, aI) E { (a, (Write o, ObjectNotWritten), a) I a.LoLock = false}

Choose a2 = 02. Choose -y' = A. Now, since 02 t al, a2 .LoLock = false and (02, vy', a2) E

{ (a, (Write o, ObjectNotWritten), a) I a.LoLock = false }
so (2a) holds; by the transitivity of ~, (2b) holds; since -y' = -y, (2c) holds; and (2d) and (2e)
hold vacuously since -y Cc> I' and -y E v. Therefore, Case 12 holds.

Case 13: (aO A, a1) C { (a, (EndWrite, WriteSuccessful), a') I a' = a except a'.LoLock = false}

Choose a2 = 02 except a2'.LoLock = false. Choose -y' = -y. Now, (02, AY', aO) e
{ (a, (EndWrite, WriteSuccessf ul), a') I a' = a except a'.LoLock = false }
so (2a) holds; since ao .LoLock = false = al, (2b) holds; since 'y' = A, (2c) holds; and (2d) and
(2e) hold vacuously since y e> I' and a C v. Therefore, Case 13 holds.

Thus (2) holds and (v, a) is restrictive for E2'. []
Given the three objectives that the solution 1) be restrictive, 2) limit denial of service, and 3) provide

good performance, E3 is very reasonable. However, E3 contains a probabilistic covert channel.
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Theorem 7: Let i and v be defined as in the previous theorem.

The projection (v, w) is not P-restrictive for E3.

Proof: Let a1 be a state such that ai.HiReading = true. Let 02 be a state such that a2.HiReading =
false. Additionally suppose that al 0 02.

Let a' = a1 except a1.LoLock = true and 01 .EventCount = a1.EventCount + 1. By the definitions of P
and T,

P(v,,) (a,, (BeginWrite, OKtoWrite), au) = .043

Let a2 = 02 except oa.LoLock = true and a'.EventCount = a2.EventCount + 1. By the definitions of P
and T,

P(v,,) (02, (BeginWrite, OKtoWrite), a') = .1

But since a' ; a1,

P(v,,) (O2, (BeginWrite, OKtoWrite), a') = P(v ,) (a2 , (BeginWrite, OKtoWrite), al) = .1

If (v, P) were P-restrictive, then it would be the case that

P(v,,) (al, (BeginWrite, OKtoWrite), al ) = P(v,,) 0(a2, (BeginWrite, OKtoWrite), a1)

Since they are not equal, (v, z) is not P-restrictive for E3. []

5.5 A P-Restrictive Solution
We now develop a solution to the secure readers-writers problem that limits denial of service and is

P-restrictive.

Let E4 be the state machine given by (S, ao, E, I, 0, T), where

S = {0, 1} x {0, 1} x object x integer x integer

We refer to the components of a state a by the following mnemonics:
a.LoLock: boolean
a.HiWaiting: boolean
a.O: object
o.EventCount: integer
a.HiStartRead: integer

The initial state of the system is given by:
ao.LoLock = false
ao.HiWaiting = false
ao.0 = null
ao.EventCount = 0
ao.HiStartRead = 0

E = {BeginRead, OKtoRead, Read, EndRead, ReadSuccessful, ReadFailed, BeginWrite,
OKtoWrite, NotOKtoWrite, ObjectWritten, ObjectNotWritten, EndWrite, WriteSuccessful, e}U
object U { write o I o C object }
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I = {BeginRead, Read, EndRead, BeginWrite, EndWrite} U { Write o I o C object }

0 = {OKtoRead, ReadSuccessful, ReadFailed, OKtoWrite, NotOKtoWrite, ObjectWritten,
ObjectNotWritten, WriteSuccessful} U object

T ={ (a, (BeginRead), a', .143) | a' = a except c'.HiWaiting = true } U
{ (a, (OKtoRead), a', .143) | a.HiWaiting = true and a.LoLock = false and a' = a except

a'.HiWaiting = false and a'.HiStartRead = a.EventCount } U
{ (a, (e), a, .143) I (a.HiWaiting = false or a.LoLock = true) } U
{ (a, (Read, o), a, .143) | o = a.O } U
{ (a, (EndRead, ReadSuccessf ul), a, .143) I a.HiStartRead = a.EventCount } U
{ (a, (EndRead, ReadFailed), a, .143) | a.HiStart Read # a.EventCount } U

{ (a, (BeginWrite, OKtoWrite), a', .71) ] a' = a except a'.LoLock = true and
a'.EventCount = a.EventCount + 1} U

{ (a, (BeginWrite, NotOKtoWrite), a, .71) | a e S } U

{ (a, (Write o, ObjectWritten), a', .143) | a.LoLock = true and a' = a except a'.O = o } U
{ (a, (Write o, ObjectNotWritten) , a, .143) | a.LoLock = false } U

{ (a, (EndWrite, WriteSuccessful), a', .143) I a' = a except a'.LoLock = false }.

E4 limits denial of service assuming that the low writer releases its write lock (i.e., performs an
EndWrite) within some reasonable amount of time after obtaining it. If we cannot make this assumption
(i.e., if the low writer is possibly erroneous or possibly malicious), then the probability of one of the existing
transitions can be reduced by .01, and the following set can be added to T:

{ (a, LockBroken, a', .01) a.LoLock = true and a' = a except a'.LoLock = false }.

With this additional transition, the system may at any time break the low writer's lock on the object,
thus preventing the low writer from obtaining a lock on the object and never releasing it.

E4 (with or without the additional set of transitions) contains no probabilistic interference.

Theorem 8: Let z be defined by:

For all a and a', a ~ a' if and only if
a.LoLock = a'.LoLock

and let
v = {(BeginWrite, OKtoWrite), (BeginWrite, NotOKtoWrite), (EndWrite,

WriteSuccessful) } U { (Write o, ObjectWritten) I o C object } U { (Write o,

ObjectNotWritten) I o c object }

The projection (v, z) is P-restrictive for E4.

Proof: Let al and a' C S be arbitrary states, y C E* be an arbitrary event sequence, and p C (0, 1] be a
nonzero probability.

We must show that:

(1) (al, y,a1,p) C T and My e> I and -y v => al 01 al, and
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(2) Va2 C S,a 1 0 2 C P()(OlVY, 0) = P( 0,')(a2,, 01Y).

To show (1), we examine the definition of T to find all -y such that (al, y,a1,p) C T and ay E> I and -y V-v.

The examination reveals that there are four such -y: (BeginRead), (Read, o), (EndRead, ReadSuccessful),
and (EndRead, ReadFailed). We consider the four cases individually.

Case 1: y = (BeginRead).
The only state transitions that accept BeginRead as input are given by:

{ (a, (BeginRead), a', .143) I a' = 0 except a'.HiWaiting = true }

Thus, 01 = al except ar.HiWaiting = true. And by the definition of Z, al 0 a'.

Case 2: x = (Read, o).
The only state transitions that engage in (Read, o) are given by:

{ (o, (Read, o), a, .143) | o =a.O }.

Thus there is no change in state, and so, al 01 a.

Case 3: x = (EndRead, ReadSuccessful).
The only state transitions that engage in (EndRead, ReadSuccessful) are given by:

{ (a, (EndRead, ReadSuccessful), a, .143) | a.HiStartRead = a.EventCount }.

Thus there is no change in state and so, al al.

Case 4: x= (EndRead, ReadFailed).
The only state transitions that engage in (EndRead, ReadFailed) are given by:

{ (a, (EndRead, ReadFailed), a, .143) I a.HiStartRead 54 a.EventCount }.

Thus there is no change in state and so, al 1 ar.

Therefore, (1) holds.

Now, to show (2), let 02 be an arbitrary state such that a1 Z a2 . We must show that P(v,) (01, , 01) =

P(v,;) (a2<, y al).

We have two major cases: -y C v and -y v v.

Case 1: -y E v.

According to the definition of v, there are five different event sequences -y E v for which we must show

the above equality. We proceed with one subcase for each of these event sequences.

Case 1.1: -y = (BeginWrite, OKtoWrite).
By examination of T, the transitions that can engage in -y are given by:
{ (a, -y, a', .71) | o' = a except a'.LoLock = true and a'.EventCount = o.EventCount + 1 }
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Suppose a'.LoLock = true. There exists exactly one a' C S such that a' = a0 ex-
cept a'.LoLock = true and a'.EventCount = a1.EventCount + 1. Since al.LoLock =
true = a'.LoLock, a' 1 a' and therefore, P(,;)(al,-ya') = .71. By similar reasoning,
P(v,~) (92 , -Y, alD )= .71. Hence, P(t,),(al,A,0 l) =P(v1)(a2,y,al).

Suppose, on the other hand, that aI.LoLock = false. In this case, there does not exist a
a' 01 a such that a' = 0l except a'.LoLock = true and a'.EventCount = al .EventCount + 1.
And so, P(U)(al, y, 0a) = 0. And by similar reasoning, P(zt)(02,Y,a1) = 0. Hence again,
P(,,;Z~) (O 7,1) = P(v,>)(a 22, , 0). Therefore, Case 1.1 holds.

Case 1.2: a = (BeginWrite, NotOKtoWrite).
By examination of T, the transitions that can engage in -y are given by:

{ (a,y,a,.71) I a C S}.

Suppose a0 1 al. Then P(,,)(al,'0) = .71. By the transitivity of ,, a 0 2 and so

P(V,,)(a 2 ,-Y,a1) = .71. Hence, P(,,)(al, y,a1)=P(v,)(a2,a,).

Suppose, on the other hand, that al 96 a1. Then, P(U ~)(alny,01) = 0. By the transitivity
of z, al 0 02 and so P(v,,)(a 2,-Y, 1) = 0. Hence again, P(V,,)(ol:aOl) = P(UD)(al2,adl).

Therefore, Case 1.2 holds.

Case 1.3: -y = (Write o, ObjectWritten) for some object o.
By examination of T, the transitions that can engage in y are given by:

{ (a, y, a', .143) | a.LoLock = true and a' = a except a'.O = o}.

Suppose that a1.LoLock = a1.LoLock = true. There is exactly one state a' such that a' = al
except a'.O = o. Since (a1, (Write o, ObjectWritten), a', .143) is thus a member of the above
set and a' al, P() (aly, 0a) = .143. By the same reasoning (since al 0 a2 and hence,
a2.LoLock = ao.LoLock = true also), P(V,,)(a 2 ,-Ya ) = .143. Hence, P(vy)(al,-Ya1) =

'(y2, o1, l) .

On the other hand, suppose that a1.LoLock = false or a1.LoLock = false. In this case,
there does not exist a a' 0 1l such that a1.LoLock = true and o' = u1 except a'.O
o, and so, P(U>)(al,-y, 01) = 0. Similarly, since a, a2 and so a2.LoLock = al.LoLock.
P(v, )(a2 ,-^,a1) = 0. Hence again, P(v,) (al,, aj ) =P(v)(a 2 ,A, a1). Therefore, Case 1.3
holds.

Case 1.4: -y = (Write o, ObjectNotWritten) for some object o.
By examination of T, the transitions that can engage in -y are given by:

{ (a, y, a, .143) | a.LoLock = false }.

Suppose that al.LoLock = a'.LoLock = false. Then, (al, y,a1 ,.143) is a member of the
above set, and al 1 a', and so P(v,)(olvyva1) = .143. By the same reasoning (since
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a1 a2 and hence, a2 .LoLock = ao.LoLock = false also), P(v,,)(a 2vy a) = .143. Hence,
P(,, P(alY, 1a ) = P(V,) (a2, 0y, l).

On the other hand, suppose that a1.LoLock = true or a1.LoLock = true. In this case, either
(a1,-y, a1, .143) is not a member of the above set, or al or', and so, P(V,,)(al,,y, 0a) = 0.

Similarly, since al t 02 and so a2.LoLock = al.LoLock, P(v,)(a2,y2, 01) = 0. Hence again,
P(,z) (alya, 01) = P(V,,)(a 2 ,-y, 01). Therefore, Case 1.4 holds.

Case 1.5: -y = (EndWrite, WriteSuccessful).
By examination of T, the transitions that can engage in y are given by:

{ (a, -y, a', .143) l a' a except a'.LoLock = false }.

Suppose or.LoLock = false. Then, there is exactly one state a' such that a' = o1 ex-
cept o'.LoLock = false. Since aI.LoLock = false = a'.LoLock, a1 a' and there-
fore, P(v,) (al, -y, o1l) = .143. By similar reasoning, P(,,) (a2 , AY, al) = .143. Hence,

P(,,) (al, Y, 0l) = P(,,,) (02,t, rl)

Suppose, on the other hand, that a'.LoLock = true. In this case, there does not exist a
a' p 01 such that a' = a1 except a'.LoLock = false. And so, P(,,)(al,-ya') = 0. And
by similar reasoning, P(,) (a 2,-y, ) = 0. Hence again, P(V,,)(alUl,'Y,) = P(vD)(a 2,-yaOl)

Therefore, Case 1.5 holds, and so Case 1 holds.

Case 2: -y V v.
We will divide this case into two subcases: al ao and o1 o r1.

Case 2.1: al ~orl
By the definitions of T, v, and ~, it can be shown that for any possible transition, (a, , a',p)
where y is an invisible event sequence, it is the case that or a' (i.e., for any -y' C E* -v,

( ',o',a ,p) C T implies ar z a').

Now, by the definition of P,

P(V,)(olyval) E =Y

aY EE*-v and
0e2 1e

Since a1 r a' and, for any Ay' E E* - v, (ao,-y', o,p) E T implies al t a' (as noted above),
the above equation can be simplified to:

" P(V ,:) (al, My, 'l) = E P(0,Oy ,2 ) = P(VX ) (al 7, 01a)
-y'EE -v

Claim: Given that Hy V v, for any a C S, P(v, ) (a, -y, a) = .572.
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Justification: Given any state a, (1) the event (BeginRead) can occur with probability .143;
(2) the event (Read, o) can occur with probability .143; (3) either (OKtoRead) or (e), but not
both, can occur with probability .143 (depending on the values of o.HiWaiting and a.LoLock).
(4) either (EndRead, ReadSuccessful) or (EndRead, ReadFailed), but not both, can occur
with probability .143 (depending on the values of a.HiStartRead and a.EventCount). Sum-
ming up these four, P(v,,) (a, -y, a) = .572, regardless of the state a.

Therefore, we have,

P(v,,v)(0l,7, 01) = P(v,,)(0l`,yal) = P(vz)(02 , y,02) = P(v,;)(0 2wya1)

and Case 2.1 holds.

Case 2.2: al 0 al
In this case, there does not exist a oa l a' and a probability p, such that (0l, y, au, p) E T.
So, P(v,:)(0lvya') 0 O. Similarly, since a, 02 and so, 02 0 a', it can also be shown that
P(v,,,z) (02,, 0= 0. Thus, P(v,,t)(aly, a) P(vz)(a 2,-y, a) and Case 2.2 holds.

Thus (2) holds and (v, .) is P-restrictive for E4. []

6. Composing Systems
It is desirable for P-restrictiveness to be composable (as is restrictiveness). To show that P-

restrictiveness is composable requires a formalization of the composition of probability-extended state ma-
chines. However, there is not only one way to define this composition. The main difficulty we encountered
in defining the composition of machines was how to treat time. On the one hand timing considerations can
affect the probabilities of events. For example, consider two systems: system A simply outputs a continuous
sequence of l's and system B simply outputs a continuous sequence of 0's. When these two systems are com-
posed, the composite system outputs a continuous, nondeterministic sequence of l's and 0's. The probability
that the composite system will output a 1 at any given state of the system is based on the relative speeds at
which the component systems operate. On the other hand, time is not represented in our model. Therefore,
we have no way to model the composition of probability-extended state machines in a fully general way.

In future work, we may incorporate the notion of time into the current model. In so doing, it may be
possible to incorporate constraints on timing interference (which is not constrained at all in the present work)
as well as allow us to properly define the composition of systems and demonstrate the general composability
of P-restrictiveness.

In the meantime, we offer the following limited result. In the following sections, the simple composition
of probability-extended state machines is defined and P-restrictiveness is shown to be composable under
simple composition. In defining the simple composition of machines, we assume that the composed machines
operate at an identical, constant rate. This is a reasonable assumption in some applications (e.g., two
machines executing the same software on the same hardware at the same clock speed).

6.1 The Simple Composition of Systems

Let A = (SA, SOA, EA, IA, OA, TA) and B = (SB, SOB, EB, IB, OB, TB) be two state machines. Pro-
vided that EA n EB = 0, we define the simple composition of A and B, denoted AIIB, as the machine
(S, sO, E, I, 0, T), where

S = SA X SB
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SO = (SOA, SOB)

E=EAUEB

I = IA U IB

O= OA U OB

T = {((SA,SB), Y,(,tA,tB),'P)I(SA,SB) e S and (tA,tB) E S and p E [0,1] and

(((SA, , tA,p) E TA and SB = tB) or

((SB, Y,tB,P) E TB and SA = tA) )}

If it is not true that EA n EB = 0 then All B is undefined.

6.2 The Composition of Projections

Let A = (SA,SOA,EA,IA,OA,TA) and B = (SB,SOB,EB,IB,OB,TB) be two state machines. Also
let (VA, :A) and (VB, B) be projections of A and B, respectively. Provided that VA nVB = 0, we define the
composite projection, denoted by (VA, ZA) o (VB, PB), as the view (v, P), where

V = VA U VB and

(V(SA,SB), (tA, tB) E S)[(SA,SB) Z (tA, tB) 4;*- SA ;A tA and SB B tB]

If it is not true that VA n VB = 0 then the composite projection is undefined.

6.3 The Composability of P-Restrictiveness

Theorem 9: Let A = (SA,SOA,EA,IA,OA,TA) and B = (SB,SOB,EB,IB,OB,TB) be two state machines,
and (VA, ZA) and (VB, PB) be projections of A and B, respectively. If AIIB = (S, SO, E, I,0, T) is defined,
and (VA, TA) is P-restrictive for A and (VB, tB) is P-restrictive for B, then (VA, ~A) c (VB, PB) = (V, -) is
P-restrictive for AIIB.

Proof: Let (Al, B1 ) E S and (Al, BI) C S be arbitrary states, -y E E* be an arbitrary event, and p E (0,1]
be a nonzero probability. We must show that

(1) ((Al, Bi), -y, (A', B'),p) E T and Oyec I and -ya v (Al, Bi) - (A', B1), and

(2) V(A 2, B2 ) C S, (Al, Bl) ; (A2 , B2 ) • P(v,)((Al, Bl), y, (Al, B1)) = P(~v,) ((A2 , B2 ), -y, (A, B1)).

To show (1), let ((Al,BI),-y, (Al,B1),p) E T and Cy E>I and -y v v. By the definition of T, we have two
cases:

Case 1: (Al, -y, A', 2p) E TA and B = BI.
By tlhe definition of v, ¢ v =V -Y V VA. Also, since -y E> I and EAnlEB = 0 and -y EA, it
must be the case that -y e> IA. And so, by the P-restrictiveness of A, A1 PA Al.
By the reflexivity of ;B, B1 'B B1 and therefore, (Al, Bl) (Al, BI).
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Case 2: Al = A' and (BIy,B1,2p) C TB.
This case is analagous to Case 1.

Now to show (2), let (A2 , B2 ) be a state such that (Al, B1 ) z (A2 , B2 ).

We must show that P(U,,)((AlBl),-y, (A',BI)) = P(v )((A2,B2 ),Y, (A',BI)). We will show this in three
cases.

Case 1: yCVA.

P(v,>) ((A1, B 1), -y, (A', BI))= P((Al,B1),y,(A',B2)) [def. P(v,)]
1 1 2 2AlBl

[def. T and p]=2 E P(A1,-yA2,)

2 P((VA,ZA) (A1, y, A1)

2 P(VA,,A) (A 2 ,y, A1)

2 E P(A2,-y,A',)
A' zA1

[def. P(VA,~A)]

[P-rest. (VA, A)]

[def. P('A ,~~A) ]

[def. T and p]= ' _ P((A2,B2),y, (A',B2))= S~~~~~~~~~~ 
(A',B2)((A',B 2 )

= P(.,,) ((A2, B2), 7, (A', B'))

And so, Case 1 holds.

Case 2: -' E vB.
This case is analogous to Case 1.

Case 3: -y v.

P(v,,) ((Al, B), -y, (A', BI)) = E
'cE-v and

(A', B'),:(A', B')
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P(A1 ,.y',A&,) + 2

[def. T and p]

2 (VA= ,A) 1) + 1 [def. P(VAEA ]

P(VAIA) (A 2 , A1) + 2P(VB,"BZ(B 2 yB1)

[P-rest. (VA, A) and (VB, B)]

P(A2,-',A',) + 2
St'EEA-VA and

A'2 tiA'I
y'EEB-VB and

B',&B'

[def. P(VA,IA) and P(vB,,B)]

[def. T and p]= E
,y'EE-v and

(A'2,B2')-(Aj,B')I

And so, Case 3 holds and the theorem is proved. []

7. Conclusions and Future Work

We have shown with examples that small systems that are restrictive (and that may appear to be

reasonable) can contain probabilistic interference (i.e., probabilistic covert channels). Furthermore, it is clear

that with larger systems that are shown to be restrictive, probabilistic covert channels may exist that are

subtle and difficult to detect. Our extension to McCullough's work provides a security policy that, when
applied to a system, guarantees that the system will contain no probabilistic interference.

Additionally, the main example of this report showed how nondeterminism can be used to prevent

denial of service, and that useful, nondeterministic systems can be shown to be P-restrictive. Of course, the

introduction of nondeterminism to prevent denial of service, as in our example, adversely impacts overall

system performance. A tradeoff must be made between prevention of denial of service and system perfor-
mance.

To apply P-restrictiveness in the development of secure systems, an implementation language that

supports the specification of probabilities is needed. The compiler and target machine for this implementation

language must accurately implement the specified probabilities, so that the actual system will behave exactly

as in the specification, and thus be P-restrictive. Therefore, any effort to apply P-restrictiveness must be a

long-term effort.

As discussed in the introduction, our plans for future work are to extend the present model and

definition of security to include timing considerations. This will result in a definition of perfect security.

Following that, it is our intention to weaken our definition of security to allow a quantifiable amount of
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interference. Hopefully, this will make the definition more usable (i.e., more systems will satisfy the definition)
and will allow system developers to formally and precisely determine the rate at which a system can leak
information. Furthermore, such a definition would allow system designers to trade off the security of the
system with other design goals such as system performance and prevention of denial of service.
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